Reg. No. : \square

Question Paper Code : 97112

B.E./B.Tech. DEGREE EXAMINATION, DECEMBER 2015/JANUARY 2016.

First Semester

Civil Engineering

$$
\text { MA } 1101 \text { - MATHEMATICS - I }
$$

(Common to all branches)
(Regulation 2008)
Time : Three hours
Maximum : 100° marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. If $A=\left[\begin{array}{lll}2 & 8 & 4 \\ 0 & 3 & 4 \\ 0 & 0 & 5\end{array}\right]$ then find the eigen values of A^{-1}.
2. Find the quadratic form associated with the symmetric matrix $A=\left[\begin{array}{ccc}2 & b / 2 & -1 \\ 5 / 2, & 8 & 3 / 2 \\ -1 & 3 / 2 & 4\end{array}\right]$
3. Find the angle between the straight lines $\frac{x}{2}=\frac{y}{-2}=\frac{z}{1}$ and $\frac{x-4}{2}=\frac{y-5}{1}=\frac{z+6}{2}$.
4. Find the equation of the sphere passing through the circle given by $x^{2}+y^{2}+z^{2}+3 x+y+4 z-3=0$ and $x^{2}+y^{2}+z^{2}+2 x+3 y+6=0$ and the point $(1,-2,3)$.
5. Find the radius of curvature of the curve $y^{2}=x^{3}$.
6. Define the envelope of the family of curves.
7. If $u=x^{3} y^{3}+x^{2} y^{3}$ and $x=t^{2}, y=2 t$ then find $\frac{d i}{d t}$ without subsituting x and y in u.
8. If $u=x^{2}-y^{2}, v=2 x y$ evaluate $\frac{\partial(x, y)}{\partial(u, v)}$.
9. Find the particular integral of $\left(D^{2}-4 D+3\right) y=x^{2}$.
10. Convert the differential equation $\left(x^{2} D^{2}+x D+1\right) y=\sin (2 \log x) \sin (\log x)$ into an equation having constant coefficients.

$$
\text { PART B }-(5 \times 16=80 \mathrm{marks})
$$

11. (a) Reduce the quadratic form $8 x_{1}^{2}+7 x_{2}^{2}+3 x_{3}^{2}-12 x_{1} x_{2}-8 x_{2} x_{3}+4 x_{3} x_{1}$ into - the canonical form through an orthogonal transformation. Write down the orthogonal transformation, which you use. Find the nature, rank, index and signature of the quadratic form.

Or
(b) (i) Solve $(2 x+3)^{2} y^{\prime \prime}-(2 x+3) y^{\prime}-12 y=6 x$.
(ii) Solve by the variation of parameters method $\frac{d^{2} y}{d x^{2}}+y=\sec x$.
12. (a) (i) Find the equation of the image of the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{4}$ in the plane $2 x+y+z=6$.
(ii) Find the length of the shortest distance between the pair of lines

$$
\begin{equation*}
\frac{x-2}{2}=\frac{y+1}{3}=\frac{z}{4} ; 2 x+3 y-5 z-6=0=3 x-2 y-z+3 . \tag{8}
\end{equation*}
$$

Or
(b) (i) Find the equation of the tangent plane of the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y-6 z+5=0$ which are parallel to the plane $2 x+2 y-z=0$. Find also their point of contact.
(ii) Find the equation of the cone whose vertex is $(3,1,2)$ and the base curve is $2 x^{2}+3 y^{2}=1 ; z=1$.
13. (a) (i) If the center of curvature of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at one end of the minor axis lies at the other end, then prove that the eccentricity of the ellipse is $\frac{1}{\sqrt{2}}$.
(ii) Prove that the evolute of the tractrix
$x=a(\cos \theta+\log [\tan (\theta / 2)])$ and $y=a \sin \theta$ is a catenary.
(b) (i) Find the envelope of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are connected by the relation $a^{2}+b^{2}=c^{2}, c$ being a constant.
(ii) Find the evolute of the rectangular hyperbola $x y=c^{2}$.
14. (a) (i) If $u=\tan ^{-1}\left[\frac{x+y}{\sqrt{x}+\sqrt{y}}\right]$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{4} \sin 2 u$.
(ii) Find the minimum value of $x^{2}+y^{2}+z^{2}$ given that $a x+b y+c z=p$.

Or
(b) (i) If $u=e^{x y}$, show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{i t}{u}\left\{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]$.
(ii) Expand $e^{-x} \log y$ as a Taylor series expansion about $x=0$ and $y=1$ upto third order terms.
15. (a) (i) Solve $\left(D^{2}+D\right) y=x \cos x$.
(ii) Solve the following simultaneous equation $\frac{d x}{d t}+y=\sin t, x+\frac{d y}{d t}=\cos t$ given $x(0)=2, y(0)=0$.

Or
(b) (i) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$. Also compute A^{-1} and A^{4}.
(ii) Diagonalise the matrix $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & =2 & 1\end{array}\right]$.

